
fl ----------

S CR 1395 6 1  FNITE PURE INTEGER 74-30550[PROGRAMMING ALGORIT EMPLOYING ONLY N 3055
HYPERSPHERICALLY DEDUCED CUTS

Richard D. Young

por ( ce Uni,.) p RiHce University

nclasHouston, Tas 77001
FINITE PURE INTEGER PROGRAMMING

ALGORITHMS EMPLOYING ONLY HYPER-

SPHERICALLY DEDCED CUTS

Richard D. Young

Departments of Economics and
Mathematical Sciences

Rice University
Houston, Texas 77001

May 3, 1971

This is a working paper and should not be quoted without permission.

This research has been wholly supported by NASA Grant ) Ri.o /--6



ABSTRACT

This paper develops three algorithms that may be based exclusively on

hyperspherically deduced cuts. The algorithms only apply, therefore, to

problems structured so that these cuts are valid. The algorithms are shown

to be finite.

The general strategy of the methods is simple. Let S denote the

solution set for the associated linear program and let 0 denote the

hypersphere that contains S, while e represents the boundary of 0.

Ti symbolizes the intersection of all the half space restrictions that

are adjoined through cycle i - 1. The current (reduced) solution set

is S i. In every cycle T, D Si and for some finite i (unless an

integer solution is already located) we obtain T, c 6 and T i n 0=

which implies Ti (and therefore S,) contains.no integer solution.
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1. Introduction and Summary.

This paper describes two primary algorithms and one composite algorithm

for a special class of pure integer programs. The special class of problems

consists of problems that admit hyperspherically deduced cuts.

Let the integer program be given as

max ctx

subject to:. x E S

x to be an all integer vector.

S is a convex polyhedron in En and ct is an integer vector. For

our special class of problems, we have

S ce

where 6 is a closed hypersphere, and

x i is an integer solution in S q x' E S n

where 8 is the boundary of 8.

Problems in this class permit use of special cuts. The theory behind

these cuts, generalizations of the hypersphere to more general convex sets

containing S, and discussion of the scope of the special class of problems

is found in references [ 1 , [2 , [3 ] and 15 1.

The algorithms developed here are shown to be finite and.do not depend

on the use of Gomory cuts to insure finiteness. Unfortunately, the finiteness

of these methods is also substantially independent of special characteristics

of the hyperspherically deduced cuts. Finiteness will be achieved even

though cuts considerably weaker than the hyperspherically deduced cuts are

used. This result, is achieved at the cost of employing tree-search methods
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in certain steps of the algorithms, with all the implicit attendant diffi-

culties of data storage and search.

These algorithms are not designed to solve the integer programming

problem directly. Rather, the goal is more elementary: to locate a single

integral x i E S or determine that S n 0 = 0 and S has no integer

solutions.

It is completely straightforward to use these algorithms to construct

methods forlsolving max ctx subject to x E S, and x an integer point.

For example: if S. contains no integer point x i,. then the problem has no

solution. If an integral xO E S is located by one of our algorithms, then

we repeat the procedure by attempting to locate an integral x E S1

(S (xlctx > ctxo + 1)). Repetitive application of this routine will

obviously solve the original integer program.

The succeeding sections discuss first the general characteristics of the

two primary algorithms, and then the specifics of algorithms I and II. An.

exemplary composite method, algorithm III, is developed next. Following

that, the -finiteness argument is stated. The final sections discuss

related work and future research possibilities related to the developments

of this. paper.

.si
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2. Notational Conventions.

This paper will employ the following notational conventions:

a Vectors will be considered to be column vectors and the superscript

t will always denote transposition.

a The sets S and 0 will be assumed to be subsets of Euclidean

n-space, denoted by En

a The origin will be assumed to be located at, the center of 9.

a The radius of 0 is (p) 2 . Thus for any point y E 0 we have

yty = p.

a The symbols x, y, z, and h will all be used for vectors in En

Typically x will denote an element of S, and y an element of e

while z is neutral with respect to these classifications - a utility

infielder. Normally h will denote the fixed coefficients of (or a normal to)

a hyperplane equation.

a Since the constraints of interest here will always non-trivially

intersect 0, if h E § then the constraint hty < v will have

-p <V < p.



3. A General Outline of the Algorithms.

Both of the primary algorithms (I and II) developed in this paper have

common procedural regularities that are outlined in this section. Subse-

quent sections will introduce the procedural details that. distinguish the

two particular methods. The typical cycle of these algorithms consists of

two phases. I shall label these phases the S-cut phase and the 0-tangent

phase.

3a. S-Cut Phase.

In the S-cut phase an extreme point x i , of S i (the current,.

reduced remnant of S) is located. If x i is an integer point the pro-

cedure terminates. Otherwise we generate a cut that removes x1  from Si.

Denote by H i the feasible halfspace of this cut. Hi is then used to.

reduce Si to Si+ l  (i.e., S1+i = Si, n Hi), and to effect a similar

reduction for the 0-tangent phase.

Location of x i in the S-cut phase is accomplished by solving a

linear program. The solution set of this linear program is 'S .  The

objective function may be selected arbitrarily in the first cycle and

thereafter this datum is provided as an output from the 0-tangent phase.

3b. 0-Tangent Phase.

The 0-tangent phase serves two purposes: (i) to provide a measure of

the possibility that integer points exist in Si  (hence in S) and

(ii) to locate prospectively reasonable "regions" of S, in which integer

solutions may be sought.

1.1

Let T, = f Hk. Clearly Si cT 1 .
k=1

The goal of this phase is to find a point y' E (T i n e ) . If T i n e
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is empty then Si n is empty and no integer solutions exist in Si or

in S. If a point yi E (TI n. ) is located, then yi is used to

generate an objective function for the next iteration of the S-cut phase.

To see the rationale for this use of yi, note that yi E Ti implies

yi has not yet been eliminated from S (if yi E S) and y! EJ implies

y' is an integer solution (if yi E S). Hence y' is a prospective

integer solution. Now let h i = yi denote the vector of coefficients for the

supporting hyperplanel (of e) at y . If yi is in S then y' will be

the optimal solution to

max h i * x subject to x .E Si ,

which is the problem (induced by h i ) in the S-cut phase.

I hi = y1  follows from the center of 0 being the origin. y' is a
vector from the origin to a point in 0. The set (yl(yi)ty = p) is
the tangent hyperplane to E at y'.



4. Specific Description of Algorithm I.

The description of algorithm I is given first in general summary form.

Following that, specific methods of implementing certain steps in the

algorithm are discussed.

4a. Procedural Outline.

Initial Step

To = E n

so =S

Repeated Step

8-Tangent Phase; index = i

1. If Ti ne = 0 stop: S contains no integer solutions.

2. If T i1 n 0 0 , locate y' E (Ti n e).

(Steps 1 and 2 are accomplished by solution and analysis of an

auxiliary problem described below).

3. Define hi = y

4. Go to the S-cut phase.

S-Cut Phase; index = i

i. Solve: max(h±)t • x subject to x E St .

Denote the optimal solution by x.

2. If xi is an integer solution, stop. A solution has been

obtained.

3. If xt is not an integer solution, generate a new halfspace

restriction

H 1 = (zl(hi)tz < v,), where v i is a scalar



satisfying v, > v i  1 > v.

(Definition of v, and v, is given below.)

4. Redefine S+ I 
= Si n H1

Ti+ I = T i n H i

Advance the index to i + 1, and go to e-tangent phase.

4b. Discussion

There are two main ambiguities in this statement of algorithm I. Step

2 of the 0-tangent phase requires "location" of yi E (Ti n 5). How is

this step accomplished? When i = 0 and To 
= En , an arbitrary point

on 0 may be selected. When i > 0, solution and analysis of the

auxiliary problem described below in section 
4c provides one method for

locating yi or determining that Ti n 0 is empty.

The second ambiguity involves the depth of the cut - (hi)t x < v

adjoined in step 3 of the S-cut. phase. 
The maximum depth of the cut can

be determined by considering the points where 
edges incident at x

intersect e. Let K denote an index set for the edges incident 
at x i ,

and let xik symbolize the point of intersection of the 
.kth edge with

0. Define

v, = max (hi)txlk
kEK

The theory justifying convexity cuts - see [ 1 ], [2 ], [5 ] - shows that

if v1 > v the cut will remove.no integer solutions from S1. To remove

some points from S i the cut must satisfy

(hi)t .x < (h1)x =

The range [v-, ) is permitted for v, because setting v, = v1 may
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not be universally advantageous. Consider, for example, the relation between

T i and Ti+ 1 = (T1 n Hi). In the 0-tangent phase (in cycle i + 1) it is

necessary to determine whether the new extreme points in Ti+ 1 (and not in

Ti) are in e. This search may be easier to conduct when the cut that

determines Hi *is shallower.

4c. The Auxiliary Problem.

There are many ways to. implement steps 1 and 2 of the 0-tangent phase,

and while only one specific method is presented here, the possibility of

modifying the algorithm by altering the implementation of these steps should

be recognized.

We propose the solution of a. problem that seeks a point in 0 that,

roughly speaking, maximizes the "distance" from the "closest" hyperplane

boundary of Ti . Here "distance" from a hyperplane boundary is measured

in terms of the magnitude of the slack variable associated with the halfspace con-

straint. If this maximin distance is negative then Ti= 0 and hence

T i n 0 is empty. If the distance is positive and the maximal point is in

5, then we have found y'. If the distance is positive, and the maximizing

point is interior to 0, then a path of edges (hopefully short) will lead

from the maximizing point to each corner point in Ti . These corner points

(hopefully.not too numerous) can be located and tested for membership in 0.

This testing either finds a suitable y' E S or determines that T, n e = o.

Formally we solve the following auxiliary problem (PA):

max u

subject to (hk)t y + r + = v, (k = ,1,...,i-1)

yt . yp,

y unrestricted

u unrestricted
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r > 0 (k = 0,1, .... ,i-1).

Let the optimal solution to (PA) be denoted by y, u, r, (where r

symbolizes the vector of slacks from (PA)). Consider the following three

cases :

I. u < 0,

II. u > 0 and y = p,

III. u > 0 and yt < p.

These cases have the following interpretations:

I. implies Ti n is empty,

II. implies y E (T I n ). Designate y= y ,

III. requires a subsidiary analysis of the solution set for, (PA).

-In case III we ignore the nonlinear constraint and investigate basic

feasible solutions to (PA) that have u = 0. These. solutions are the

corner points of Ti. Let 9, t, i designate such a solution.

If any corner point solution has Yt . 9 > p, then the set T1 n

is not empty. To see this note that both 9 and y are in ITi and y

is in the interior of 0 while 9 is not interior to 0. Accordingly there

exists a point y, a convex combination of y and 9, such that , E

and E T,. Designate y = y

Alternatively every corner point, 9, , 9, may ,have 9t . 9 < p.

This means that all the corner points of Tj are in the interior of 8.

Since both Ti and 9 are convex we have T1 f 8 = .

While it is not my purpose to discuss in this paper detailed methods of

conducting the search alluded to in the above discussion of Case III, I be-

lieve a brief comment is fitting on the fact that some cycles of this

algorithm require an exhaustive investigation of all basic solutions to (PA)
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that have u = 0 (ignoring the nonlinear constraint). Computationally

this is certainly repugnant. Still, some mitigating factors exist and should

be mentioned. These are:

i) An integer solution may be located before Case III is encountered.

ii) If the space containing Ti and 0 has n dimensions, thien at

least n + 1 cuts must be present in (PA) before Case III can

occur.

iii) In the first occurence of Case III there are only n + 1 extreme

points with u = 0. If in this instance Ti n 0 # and a cut

must be added, it is only necessary, in the next cycle,.to locate

(anew) the newly created extreme points for which u = 0 and

ri = 0. While this latter task may require extensive search, it

is certainly possible and perhaps likely that only n new extreme

points will be created by the new cut and that location of these

new points will be comparatively straightforward.

Paradoxically it appears that locating all the new extreme points is

entirely straightforward if the cut (that creates the new extreme points) is

sufficiently shallow.



5. General Description of Algorithm II.

Algorithm I might be characterized as "omnidirectional" in the sense

that the points of yl generated in the 0-tangent phase tend to distribute

somewhat uniformly over the surface of 0. In any. case there is no built-in

bias in the algorithm favoring search in any particular sector of e .

Algorithm II, in contrast, has a definite directional orientation. The

algorithm is specified in part, by an initial datum, the vector d. The search

conducted by algorithm II examines potential solutions yi in a sequence

that has monotonically decreasing values for the expression dtyi = ut

This algorithm has the same general two phase cycle routine as

algorithm I. The S-cut phase is identical in many respects: a tangent

hyperplane to 0, denoted by hi is an input from the 8-search phase. An

extreme point of Si is located by optimizing (hi)tx over all x E Si.

If the optimal point, x', is integral (in 0) the procedure terminates,

otherwise the cut (hl)tx < v i is developed, and used to redefine Si+1

and T ~+1 . The main difference in this phase is an additional updating

step that is incidental to new developments in the etangent phase.

The special characteristics of this algorithm reside mostly in the

-tangent phase. In very general terms the procedure of this phase is as

follows:

1. Locate the point in Ti n ; that maximizes a fixed linear function

dty = u. Let y9. denote the maximizing y E (Ti  ).

2. Define w = min dtx.
xES

If dty* < w, stop: no integer solutions exist in S.

Otherwise designate y' = y*
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The principal problem here is the search required in step 1. Locating

the point that maximizes dty subject to y E T I n 0 is not straight-

forward -- because of the non-convexity of the set Tf 0 . This

difficulty is met, in part at least, by controlling the development of Ti

so that limited incremental enumeration will reveal the solution sought in

step i.

5a. Detailed Description of the Algorithm II.

Initial Step.

1. Develop n cuts (h')ty < v i  (i = ,...,n), such that the

point y+ satisfying (hi)ty+ = v, (i = 1,...,n) is interior

to 0. (Such a start is always possible: e.g., choose a non-

degenerate extreme point of S, and let the hyperplanes incident

at this point be defined as (h)ty v1 (i.= l,...,n).) We

assume that the relation of the vector dt to these n cuts

is such that dty+ > dty for all y satisfying (hi)t y• y <v

(i = 1,...,n).

2. Define S = S n (xlhx < vi, i = l,...,n), and

T = (ylhy < v, i =,...,n.

3.- List all edges incident at y+. Denote these edges by El,...,E n .

List also the points y ,...,yn where these edges, considered

as edges of T1 , (feasibly) intersect e, and, finally, list the

d-function values dtyi. u i , (i = ,...,n).

Repeated Step.

0-Tangent Phase; index = i.

1. Select from the list the edge E, for which dty* = u* > u

for all edges E. on the list. If u* < w stop: no integer

points exist in S;.otherwise go to 2.



2. Designate y' = y*. Define h Y

3. Remove E,, y*, and u* from the list.

4. Go to the S-cut phase.

S-Cut Phase; index = i.

1. Solve max (hi)tx, subject to x E S,. Denote the optimal

solution to this problem by x i.

2. If x i is an integer solution, stop; otherwise 
generate a new

restriction:

(hi)tx < vi

where v i is a scalar constant satisfying

v < v1 < v,. (See definition of v i and v, above

p. 7 ).

3. Redefine Si+1 = St n H i and' TI+1 = T i  H1 where Hi

(zI (h')t z < v).

4. List the new edges, E, formed by the intersection of the boundary

of H i with planes of Ti. Also list the associated points y

where these new.edges (feasibly) intersect 0, and the associated

d-function values dty = u.

5. Remove from the list any edges E (as well as y and u) for

which y B Hi

6. Go to the 0-tangent phase with index = i + 1.

5b. Discussion.

In the 4th and 5th steps of the S-cut 
phase we require the listing of all

new edges of Ti+1 that feasibly penetrate 0, as well as the discard

of existing listed edges that no longer feasibly penetrate 0. No
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specific method for solving this problem is offered here. 
It is clear that

all new edges are in the boundary of Hj and that all eliminated edges must

penetrate Hi. It is equally clear that a finite tree search will locate 
all

new edges, and that a finite sequence of tests will detect all eliminated

edges. Relatively efficient and adaptive methods undoubtedly exist 
fo con-

ducting these searches and for efficiently storing essential information

required for the list, and by the list revision procedures. 
The omission of

these details in this paper reflects (i) time pressure and (ii) the failure

of several comparatively simple trial methods to be generally applicable. I

hope to repair this omission in a later paper.

It should also be noted that the comprehensive listing of all edges that

feasibly penetrate e is not essential to the method. It is only necessary

to find the edge E that maximizes dty. This can be accomplished by less

storage of edges and more search. The routine presented in the formal

statement of the method was chosen primarily because it seemed amenable 
to

more succinct expression.

It is worthwhile to emphasize that Algorithm II progresses by implicitly

generating a sequence of legitimate cuts of the form dtyi < ui with ui

decreasing monotonically with respect to increases in i

To see this, note first that initially Ti is a cone, with its vertex

interior to 0 . The vertex, y+ maximizes dty over all y E Ti

Consider the continuum of hyperplanes dty = u where u < dty+, and

the continuum of intersections of these hyperplanes with Ti . Denote the

set T1 n (yldty = u) by D(u), where u < dty + . Each set D(u) is

the convex hull of points on the edges that emanate from y . The largest

value of u for which D(u) intersects 6 must be equal to the value

dt*,. determined in step 1 of the 5-tangent phase. Clearly y* maximizes
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dty subject to y E T1  6 , since for all u > dty*, D(u) n e = 0. This

means that the implicit cut dtx < dty* is legitimate.

In subsequent cycles, the same essential relations portrayed above con-

tinue to hold. The cut written in the first iteration of the S-cut phase

causes D(dty*) to be reduced by intersection with H1, so that typically,

u can be reduced below the value dty* while D(u) remains contained in the

strict interior of 0. All new edges - created by intersection of T1 with

Hi - that feasibly intersect e are listed. Hence it is possible to keep

account of D(u), which is the convex hull of points on the listed edges

that have dty = u, and u can be decreased until the set D(u) again

intersects e. The cycle is repeated until either an integer point is located

in the S-cut phase, or until the value dty* at some stage is less than w.

It should be pointed out that although cycle to cycle monotonic progress

with respect to the value of dty* is achieved by this method, the finiteness

argument given in this paper does not depend on that progress. Additionally,

progress of this algorithm should make it feasible to drop particular hyper-

planes from the definition of Ti and Si after these hyperplanes become

redundant to the progress of the algorithm. While detailed rules for

dropping redundant hyperplanes have not been included here, there would appear

to be no intrinsic conceptual problem barring development of such rules.

In cases where the function dtx = ctx, i.e., dtx is the objective

function for the underlying integer program, it may be possible to consid-

erably expedite termination of the algorithm. Suppose some feasible

integer solutions in S are known and xb is the best of these in terms

of objective function value. Then by setting w = dtxb + 1 we restrict

the search of the algorithm to points in S that dominate xb in terms

of objective function value.
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6. A Composite Method: Algorithm III.

Second level algorithms can be designed that use algorithms I and/or

II in the r6le(s) of sub-routine(s). Algorithm III provides a specific

example.

Algorithm III

1. Select vectors d', d2 , ... , dm and scalars u., U 2 ,..., um,

so that the set, w = ({y(dk)ty < uk), satisfies (S n w) c 8

and S n l n f = 0.

2. Set i = 1.

3. Commence execution of algorithm II, with d = di

4. Continue iterations of algorithm II until an integer solution

is located, or until (di)ty* < u, in some cycle of the

8-tangent phase. When the latter event occurs, go to 5.

5. If i < m, set i i + 1 and go to 3; otherwise stop:

S contains no integer solutions.

The termination in step 5 is justified because setting T. = w

immediately yields a solution for algorithm I. Algorithm II is employed

in steps 3 and 4 to achieve the collection of sufficiently deep cuts

required in the definition of w. There exist numerous ways to generate

w with the requisite properties. For efficiency it is important to choose

the d', ui i = l,...,m so that the total computational effort required

-in steps 2 and 3 is minimized. Thus the specification of the cuts that

define w is a substantial subproblem in which interesting possibilities

exist for adaptation to problem classes, and to individual problems.

More flexible variants of this method can be imagined in which w is

specified dynamically - in the course of solving the problem, and in response
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to specific structural characteristics of S and T - instead of the

static, a priori specification in algorithm III.
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7. Finiteness.

Both (primary) algorithms described in this paper 
can be shown to be

finite on the basis of an elementary argument.

The foundation of this argument is the finite number of non-integral

extreme points in S and the fact that each non-integral extreme point

in S is a finite distance from e.

Let xk be an arbitrary non-integer extreme point of S. Let K be

an index set for all non-integer extreme points of S.

Define:

H(xk) - (hlh E e and ht xk > htx for all x E S),

v(X k )  max htxk
hEH(xk)

V max v(xk).
kEK

Hence for all cuts developed in the S-cut phase we have v i < vi V

Note that for k E K, htxk > p is impossible since htxk > p " xk e

and 0 D S, while [htxk p and xk E e0 xk E xk is integral.

This shows that V < p. For all h' developed in the course of either

algorithm we must have

(h i )tyi+m < vi V V < p for all m >. I

Since yi = hi + m we have

(hi)th i +  < < p

Now suppose that either algorithm generates an infinite sequence 
of

cycles. Then we have (h' I= . Since each h i E 5, and e is compact,

(hl) must have a limit point. This means that h i - hi+mll < e for an

arbitrary e > 0 and i sufficiently large. But
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Ilh' -hi+ =I j(hi)thi A- (hi+m)thi+m - 2(hi)thi+m12

llh i  - hi+z = 12p - 2(hi)thi+ml

= 12(p - (hi)thi+m)l

> 12(p - V)1 2

Since V is a fixed constant less than p it is clear that lhi - hi+

has a fixed positive lower bound for all i. This contradicts our

assumption of an infinite sequence of cycles.

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR



20

8. Related Work.

The papers on convexity cuts, intersection cuts, and hypercylindrical

cuts [1], [2], [5] constitute a general background and source of concepts

for this paper. More specifically the Glover and Klingman paper [3], which

develops a finite convexity cut method (based on Tui's work [4]), provides

implicitly an instance of the basic conceptual strategy employed here. The

common concept employed in both papers is the development of a set that

eventually is between S and e. In our paper Ti plays this role. We

maintain the relation T, D Si in every cycle and make progress with each

cycle toward the goal of Ti n 8 = 0. The "in between" set in the Tui, Glover

and Klingman development, denoted by Dp, is always in 0; and while Di

may intersect 9, there are no integer points in D i n S (since if such

exist they are automatically discovered and the (sub) problem is solved).

In their method progress is made toward the goal D, D S; and the progressive

alteration of Di is one of expanding the set D , in each stage when it is

discovered that a hyperplane boundary of Di cuts S. Thus this paper and

the Tui, Glover and Klingman papers illustrate particular tactical plans

for realizing the general strategic goal of constructing a set that is

appropriately between S, and 0. It is clear that other combinatorial

variants of these tactics are possible within the framework of the same

strategic goal.
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9. Loose Ends and Speculation.

As has already been indicated at various points in this paper there are

several opportunities for generating new algorithms by varying certain elements

of the given algorithms or by the construction of composite algorithms. Some

further opportunities of this sort will be listed here.

M It may prove useful to employ other convex sets in the role played

by 6 in this paper -- see [ 2] and [1 ] .

a The cut employed here is parallel to h i , the objective function

(normal) used as a "target" in locating x i . This option was selected

mostly for expositional convenience. The usual hyperspherical

cut (available from xi), which is typically a deeper cut, can also

be employed.

w It would appear possible to develop variations of algorithm I in which

. partially randomizedsearch .is used in the 0-tangent phase.

No computation has been attempted with any of the three algorithms.

Speculating, it would appear that algorithm I might be more efficient at

locating integer solutions -- particularly if they are relatively plentiful --

than in demonstrating that none exist in S. Thus it appears to have better

prospects in the "primal" role of locating nearly optimal or optimal solu-

tions expeditiously. Algorithm II, alternatively, may be more useful in

determining that an optimum has been obtained when it is employed with

d = c and with w set equal to the next integer above the objective function

value of the best known integer solution in S.

Since the efficiency of these methods would appear to depend essentially

on geometric relations involving S and 0, it is possible that they may
provide additional motivation and means to more effective classification of

problems in terms of characteristics that influence ease of solution.



22

10. Acknowledgements.

I want to express my thanks to Dr. R. M. Thrall for his helpful dis-

cussion of several topics related to this paper.

This research was supported by NASA Grant N y- _o-/ 60



23

REFERENCES

[1] Balas, Egon, "The Intersection Cut - A New Cutting Plane for

Integer Programming," Operations Research, 19:1, Jan.-Feb., 1971, pp. 19-39.

[2] Glover, Fred, "Convexity Cuts," working paper, School of Business,

University of Texas, Austin, Texas, December 1969.

[3]. Glover, F. and D. Klingman, "Concave Programming Applied to a

Special Classof Zero-one Integer Programs," Series in Applied

Mathematics for Management. Publication No. AMM-11, Graduate

School of Business, University of Texas, Austin, January 1969.

[4] Tui, Hoang, 'Concave Programming Under Linear Constraints,"(Russian)

Doklady Akademii Nauk SSSR, 1964. English translation in Soviet

Mathematics, 1964, pp. 1437-1440.

[5] Young, R. D., "Hypercylindrically Deduced Cuts in Zero-One Integer

Programs," to appear in Operations Research.


